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 ABSTRACT  
 

The dispersive nature of polar liquids creates ambiguity in their identification process. It requires a long time and effort to 

compare the measured values with the available standard values to identify the unknown liquid. Nowadays machine learning 

techniques are being used widely to assist the measurement techniques and make predictions with great accuracy and less 

human effort. This paper proposes a support vector machine (SVM) based classification model for the identification of six 

polar liquids-butan-1- ol, dimethyl sulphoxide, ethanediol, ethanol, methanol and propan-1-ol for a temperature range of 10 

°C–50 °C and frequency range of 0.1 GHz–5 GHz. The model is constructed using the data from the National Physical 

Laboratory (NPL) report MAT 23. The identification of unknown liquid is based on complex permittivity measurement. If 

the measurement error in complex permittivity is less than ±6% of the standard value in NPL report, the proposed model 

identifies the liquids with 100% accuracy in the entire temperature and frequency range. The performance of the model is 

validated by testing the model with data external to the dataset used. The findings show that the proposed model is a useful 

and efficient tool for identifying unknown polar liquids. 
 

 
 

 
 

 

 

 

 

 

 

1. INTRODUCTION 

Material characterization plays a major role in many applications like material processing, 

bioengineering, medical treatment and food industry. Materials can be characterized based on their 

electromagnetic properties like permittivity, permeability and conductivity. Measurements in the microwave 

frequency range focus on the complex permittivity (ε*) rather than the permeability and conductivity. Complex 

permittivity gives insight into the structure of the material, the temperature in the surroundings and the number 

of impurities in it. The real component of complex permittivity reflects the dielectric medium's ability to retain 

energy, whereas the imaginary part describes the medium's energy losses. Dispersion is the fluctuation of ε* 

with frequency. At microwave frequencies, the effect of orientation polarization is responsible for dispersion 

[1]. In the case of dispersive materials, repeated measurements at different temperatures and frequencies are 

required to study the dielectric dispersion characteristics [2]. This work looks at polar liquids that are dispersive 

in nature. These liquids are utilised in specific absorption rate (SAR) metrology because their complicated 

permittivity is comparable to that of biological tissue metrology [2], [3]. Polar liquids in their pure form can be 

employed as an excellent calibration material in the field of dielectric instrumentation. National Physical 

Laboratory (NPL) of UK has conducted a detailed study on the dispersion 
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characteristics of commonly used polar liquids using coaxial cell permittivity measurement technique. 

NPL report MAT 23 describes the ε* of polar liquids-butan-1-ol, dimethyl sulphoxide (dmso), ethanediol, 

ethanol, methanol and propan-1-ol for a frequency range of 0.1 GHz-5 GHz and temperature range of 10 °C- 

50 °C [2]. The dispersive nature of these liquids makes the identification process a complex task. 

According to related studies, unknown liquids can be identified by measuring its properties like 

density, melting point, boiling point, solubility and then comparing the results to the values of known liquids. 

It takes lot of experimental procedures and is very time consuming. Nuclear magnetic resonance (NMR) 

spectroscopy followed by Fourier transform method has been used in the identification of unknown 

alcohols [4]. NMR spectroscopy is a non destructive technique but it is very expensive. Another method used 

to identify the liquids is using surface acoustic mode aluminum nitride (AlN) transducer [5]. This method is 

very useful to test small amount of liquids but the identification process is time consuming. Complex 

permittivity measurement is a powerful tool in the identification of liquids. The most popular measurement 

techniques are transmission and reflection line, open ended probe and resonant methods [6]. In the transmission 

and reflection line method, from the measured values of transmission and reflection coefficients the ε* is 

extracted with the help of Nicholson-Ross-Weir method. Open ended coaxial probe method uses rational 

function model to extract ε*. In resonant method, measurement of quality factor and shift in resonant frequency 

are used to extract ε*. In all these cases related to complex permittivity measurement, identification of an 

unknown polar liquid requires measured value of complex permittivity followed by manual search in the 

available standard report for close matching. This takes a lot of time especially in the case of polar liquids 

because of its dispersive nature. 

Support vector machine (SVM) based classification model is proposed in this paper for the 

identification of the polar liquids. Complex permittivity (εʹ and εʺ) of the liquid, frequency (f) and temperature 

(t) of the measurement system that are very relevant to all permittivity measurement techniques are used as the 

input features to identify the polar liquids. The paper is structured as: research method, results and discussion, 

graphical user interface and conclusion 

 

2. RESEARCH METHOD 

Machine learning (ML) algorithms have the ability to recognize data and separate them into 

categories. This process is known as classification. This can be used to identify the group membership of 

the new data instances. The workflow of the classification based ML model used in this work is shown in 

Figure 1. The data obtained from NPL report is used to develop the model. The parameters εʹ, εʺ, f and t which 

are very relevant in a permittivity measurement system are taken as the input features. Model is trained using 

training set and hyperparameters are tuned to get the best accuracy. The performance of different ML 

techniques is evaluated using performance measures and the most suitable one is selected. Complex 

permittivity can be measured using several techniques in which the most commonly used methods are coaxial 

probe, coaxial cell and planar sensors. Measurement using coaxial probe and coaxial cell are well suited for 

wide range of frequencies whereas planar sensors have limited frequency of operation. Since coaxial cell based 

complex permittivity measurement is used in NPL report, the ability of the model to identify the polar liquids 

based on other measurement techniques is also verified in this work. 

 

 

Figure 1. Workflow of the proposed methodology 
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2.1. Data gathering and pre–processing 

The data for this work was gathered from NPL MAT 23 report. Table 1 shows the dataset description. 

The range of permittivity of six polar liquids for a temperature range of 10 °C-50 °C and frequency range of 

0.1 GHz-5 GHz is shown in Table 2 [2]. This is a classification problem with multiple classes that includes 

the six polar liquids as the six classes. These classes are assigned with values from 1 to 6. For better use 

of the dataset of 1,000 samples, K–fold cross validation is performed on the whole data. This splits the dataset 

into subsets and performs training and testing on different parts of the dataset. 

 

Table 1. Description of the dataset 
Dataset 
Inputs 

No Features  Values 

1 Frequency (f) in GHz  0.1-5 

2 Temperature (T) in ᵒC  10-50 
3 Permittivity (Real part)  3.23-78.5 

4 Permittivity (Imaginary part)  0.3-18.56 

Output 

No Liquid Number of 
samples 

Class 

1 Butan-1-ol 140 1 

2 Dimethyl Sulphoxide 140 2 
3 Ethanediol 180 3 

4 Ethanol 180 4 
5 Methanol 180 5 
6 Propan-1-ol 180 6 

 

 

Table 2. Range of permittivity 

Polar liquid 
Permittivity  

Real part Imaginary part 

Butan-1-ol 3.23-16.27 0.84-7.9 

Dimethyl Sulphoxide 34.85-47.12 0.3-18.56 

Ethanediol 6.93-43.48 0.94-18.3 
Ethanol 4.93-26.18 0.82-11.13 

Methanol 10.9-35.68 0.44-14.89 
Propan-1-ol 3.66-20.35 1.1-9.35 

 

 

2.2. Support vector machine classifier 

The purpose of the SVM classifier is to find the optimum decision boundary that can separate n- 

dimensional space into classes and accurately classify a new data point. For multi-class classification, the one-

against-all technique is utilised. SVM creates models for each class in this way. The mth SVM is trained with 

all of the data in the mth class having positive labels and all other samples having negative labels when using S 

classes. [7], [8]. Thus with l training data (𝑥1, 𝑦1), … (𝑥𝑙, 𝑦𝑙), where 𝑥𝑖 ∈ 𝑅𝑛 , 𝑖 = 1, . . . , 𝑙 and 𝑦𝑖 ∈ 

{0, 1,. . . , S} is the class of 𝑥𝑖 and the mth SVM solves the following minimization 
 

𝑓 = min 
1 

(𝜔𝑚) 𝜔𝑚 + 𝐶 ∑𝑙 
 𝜉𝑚 (1) 

𝜔𝑚,,𝜉𝑚  2 𝑖=1 𝑖 

such that (𝜔𝑚)𝑇 𝜑(𝑥𝑖) + 𝑏𝑚 ≥ 1 − 𝜉𝑚 , if 𝑦𝑖 = 𝑚 
(𝜔𝑚)𝑇 𝜑(𝑥𝑖) + 𝑏𝑚 ≤ −1 + 𝜉𝑚 , if 𝑦𝑖 ≠ 𝑚 

𝜉𝑚 ≥ 0, 𝑖 = 1,2, … 𝑙 
The training data 𝑥𝑖 are mapped to a higher dimensional space by the function φ which is known as 

kernel. Here 𝜔 is the weight vector, b is the bias term, C is the penalty parameter and 𝜉 is the slack 

variable [9]. By minimizing 1 (𝜔𝑚) 𝜔𝑚 SVM tries to maximize the margin 2  between the data in 
2 ||𝜔|| 

different classes. The penalty term 𝐶 ∑𝑙 𝜉𝑚 tries to reduce the number of training errors. For (1) there are S 

decision functions 

(𝜔1)𝑇 (𝑥) + 𝑏1, …, (𝜔𝑆)𝑇 𝜑(𝑥) + 𝑏𝑆 
 
𝑥 is classified to the class that has largest value of decision function 

Class of 𝑥 ≡ argmax m=1,2,..S ((𝜔𝑚) (𝑥) + 𝑏𝑚). 
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In this work, for six polar liquids the number of classes is taken as S=6. K-fold cross validation is 

applied on the dataset and hyperparameters are tuned to get the best performance from the model [8], [10]–[13]. 

For reliable estimates and best results 5-fold cross validation is selected and the hyperparameter C is tuned to 

the value 21 and the kernel is the radial basis function (RBF). (φ) [14], [15]. At a time, the 5-fold cross 

validation on the 1,000 sample dataset creates a training set of 800 samples and a test set of 200 samples. 

 

 

3. RESULTS AND DISCUSSION 

The complex permittivity of polar liquids varies non-linearly with frequency and temperature. Several 

classifiers are applied to the dataset to learn the complex relationship among data. The performance of various 

classifiers is evaluated using performance measures (accuracy, error, specificity and sensitivity) and is 

presented in Table 3. It is observed that the hyperparameter tuning of SVM with RBF kernel and penalty 

parameter C=21 can separate the six polar liquids with 100% accuracy. The suitability of SVM is thus 

confirmed. The receiver operating characteristics curve (ROC) is shown in Figure 2. The ideal point on the 

figure is in the top left corner, where the false positive rate is 0 and the real positive rate is 1. The area under 

the curve for each class is obtained as 1 [16], [17]. This shows that all the six polar liquids are classified with 

an accuracy of 1. 

 

 

Table 3. Performance comparison 

Model 
Accuracy 

(%) 
Error 
(%) 

Specificity 
(%) 

Sensitivity 
(%) 

Naive Bayes 59 41 91 59 

Decision Tree 87 13 96 86 

KNN 95 5 99 94 
Random Forest 93 7 93 98 

 SVM  1  0  1  1  

 

 

 

Figure 2. ROC for the proposed model 

 

The accuracy of the proposed SVM model for 5-fold cross validation is obtained as 100% in all the 5 

sets. This confirms the stability of the proposed model. The overfit condition is tested using three different 

methods. Firstly, the confusion matrix of both the training set and test set of the SVM classification is shown 

in Figure 3(a) and Figure 3(b) respectively. The diagonal elements indicate the correct predictions [16]–[18]. 

This shows that the SVM classifier performs well in both the training and the test set and the model is not 

overfitted. Secondly, the accuracy of the model is plotted for the training and test set by varying the penalty 

parameter C as shown in Figure 4. It shows that the model performs well in both the training set and test set 

and the accuracy is one when C=21. This also indicates that the model is not overfitted. Finally, the support 

vectors for each of the six classes have been identified and are shown in Table 4. The number of support vectors 

in each class is substantially smaller than the number of samples in each class [11]. This confirms that the 

model is not overfitted. All codes are written in the programming language Python 3.5 with the associated 

Scikit-learn library [10]. The average training time is 0.02s and the average time taken to test a 



 

797                                                           JNAO Vol. 14, Issue. 2, : 2023 

 

new data is 0.002s in a computer with an Intel Core i5 processor running at a clock speed of 1.6 GHz and 

equipped with 8 GB of RAM. 

 

 

 

 

(a) (b) 

 

Figure 3. Confusion matrix (a) Training set, and (b) Test set 

 

 

 

Figure 4. Accuracy vs penalty parameter (C) 

Table 4. Support vectors for the proposed model 

 

 

 

 

 

 

Alcohols like methanol and ethanol are highly volatile and evaporate rapidly. This changes the liquid 

temperature and hence the permittivity. Polar liquids like DMSO and ethanediol are hygroscopic, absorb water 

from atmosphere leading to variation in permittivity. Values of complex permittivity obtained from the NPL 

report are based on the coaxial cell measurement technique. Complex permittivity can be measured using 

different measurement techniques. Robustness of the proposed model needs to be tested for data obtained using 

other measurement techniques as well. The most widely used permittivity measurement techniques for liquids 

using coaxial probe, planar sensors and transverse electromagnetic cell (TEM) are considered for this purpose. 

It has been noted that the measured values of ε* differ from the standard value in NPL report and the variation 

depends on the measurement technique, temperature, frequency and the liquids used [19]–[29]. The 

measurement errors in ε* associated with different measurement techniques are 

Class Polar liquid 
Number of samples in 

the dataset 
Number of 

support vectors 

1 Butan-1-ol 140 29 

2 DMSO 140 17 

3 Ethanediol 180 44 
4 Ethanol 180 42 
5 Methanol 180 32 

 6  Propan-1-ol  180  42  
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calculated for all the six liquids and shown in Table 5. This variation is expressed as the maximum percentage 

of error (E) in measured value with respect to the standard value. The measurement error is found to be 

minimum in the case of TEM cell because of the closed structure. A new test set is formed considering these 

measured values and the response of the proposed model is noted. The number of samples in the new test set 

is 40. While preparing the new test set, focus is given to those values in which considerable variations occur 

with respect to the standard value. The proposed model is able to predict all the liquids with 100% accuracy. 

The confusion matrix for the new test set is shown in Figure 5. 

 

 

Table 5. Robustness of the proposed model 
Liquid [Ref.No] Measurement 

Technique 

T 

(°C) 

F (GHz) Maximum error in permittivity E (%) Number of 

samples 
supplied to 
the model 

Number 

of samples 
identified 

  Real part 
(εʹ) 

Imaginary 

Part 
(εʺ) 

F (GHz) 

Butan-1-ol [20] Probe 30 0.1-1 -16.72 -0.62 0.1 10 10 

DMSO [22] Sensor 25 1.58 2.88 -37.6 1.58 1 1 

Ethanediol [23] TEM Cell 24.2 0.1-4 0.07 0.3 1 6 6 

Ethanol [24] Probe 25 1-5 10.15 8.04 5 10 10 
Methanol [24] Probe 25 1-5 10.49 -0.75 1.5 9 9 

Propan-1-ol [25] Probe 30 0.1-1 -3.68 4.55 0.4 4 4 
   Total    40 40 

 

 

Figure 5. Confusion matrix for the new test set 

 

Permittivity plot of the six liquids in the frequency range of 0.1GHz to 5GHz and room temperature 

25 °C is shown in Figure 6. Real part of permittivity is shown in Figure 6(a) wheras imaginary part is shown 

in Figure 6(b). While the real part of permittivity (εʹ) decreases with increasing frequency, the imaginary part 

(εʺ) increases with frequency, reaches a peak at a frequency known as the relaxation frequency (fr) and then 

decreases. In the case of DMSO fr is 8.32 GHz which is above the frequency range specified in Figure 6. Since 

the identification of these liquids are based on the measured value of complex permittivity (εʹ and εʺ), the error 

in measurement leads to misclassification. For varied temperatures in the range of 10 °C to 50 °C, a modified 

test set is created by manually incorporating the measurement error that might occur in the entire frequency 

range (0.1 GHz to 5 GHz) during the permittivity measurement as a step variation of ±0.5% of the standard 

value of both εʹ and εʺ. The performance of the model in each step is evaluated and the maximum measurement 

error in ε* that the model can accommodate without any misclassification is found out. For a particular 

temperature, this test set consists of 120 samples with 20 samples for each liquid. It is observed that if the 

measurement error introduced in both εʹ and εʺ is equal to 6% of the standard value, the first misclassification 

occurs in the case of butan-1-ol at 10 °C and 0.1 GHz as seen from row 1 of Table 6. The accuracy of the model 

drops to 99 %. For all other temperatures and frequencies the measurement error that the model can 

accommodate without misclassification is greater than 6%. The details of first misclassification observed at 

different temperatures are shown in Table 6. Since most of the measurements happen at room temperature 25 

°C, the details of misclassification observed is also found out and presented in row 4 of Table 6. At 25 °C the 

first misclassification is observed at 0.1 GHz when the measured value of 
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both εʹ and εʺ decreases by 7.5% of the standard value. The complex permittivity plot at 25 °C and 0.1 GHz 

with a measurement error of -7.5% incorporated is illustrated in Figure 7 and the confusion matrix for the same 

is shown in Figure. 8. These results indicate that if the identification of an unknown liquid is to be carried out 

using the proposed model, well calibrated complex permittivity measurement systems with measurement error 

less than ± 6% is to be used to eliminate the chance of misclassification. 

 
 

 

 

 
(a) (b) 

Figure 6. Permittivity plot at 25 °C (a) Real part, and (b) Imaginary part 

Table 6. Misclassification test of the proposed model 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 7. Permittivity plot at 25 °C and 0.1 GHz with a measurement error of -7.5% 

  Misclassification first observed  Accuracy of the 

proposed model 

(%) 
T (°C) Error introduced in 

ε* (%) 
Frequency 

(GHz) 
Liquid Misclassified 

result 
10 + 6 0.1 Butan-1-ol Propan-1-ol 99 

15 
15 

-9 
-9 

0.2 Ethanol Propan-1-ol 98 
98 0.1 Propan-1-ol Butan-1-ol 

20 - 8 0.1 Propan-1-ol Butan-1-ol 99 
25 -7.5 0.1 Propan-1-ol Butan-1-ol 99 

30 + 10 0.1 Butan-1-ol Propan-1-ol 99 
35 - 8 0.1 Butan-1-ol Propan-1-ol 99 
40 -8.5 0.2 Propan-1-ol Butan-1-ol 99 

45 -8 0.1 Propan-1-ol Butan-1-ol 99 
50 -8 0.1 Propan-1-ol Butan-1-ol 99 

10-50 Less than ±6% _ _ _ 100 
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Figure 8. Confusion matrix for the modified test set at 25 °C and 0.1 GHz with a measurement error of -7.5% 

 

 

4. GRAPHICAL USER INTERFACE 

The proposed method is aimed to be used as a support tool to assist the measurement techniques. 

Graphical user interface (GUI) is designed for testing of unknown liquids. The inputs to the interface are the 

measured value of complex permittivity of unknown liquid, temperature and the frequency of the measurement 

system. The model identifies the unknown liquid within a fraction of a second. The front end of the GUI is 

designed using hypertext markup language (HTML) and the appearance is improved using cascading style 

sheet (CSS). The back end consists of the machine learning model and the web framework which are written 

in Python. Flask framework is used for the development of the interface [30]. It is a micro web framework that 

loads the machine learning model, takes the input from the front end and returns the predicted result. This GUI 

can be used for the temperature range of 10 °C to 50 °C, frequency range of 0.1–5 GHz. A warning message is 

displayed in the front end if the inputs exceed this range and also if the measured permittivity is not within the 

range of the dataset. The appearance of the GUI and an example of the predicted result are shown in Figure 9. 

 

 

Figure 9. Graphical user interface 

 

 

5. CONCLUSION 

Measurements of complex permittivity in the microwave frequency range are well suited for the 

identification of unknown materials. But in the case of polar liquids, because of the dispersive nature, it is 

difficult to identify the liquid even though the permittivity is known or measured. In this work, SVM based 

classification model is implemented using Python for the identification of six polar liquids-Butan-1-ol, DMSO, 

Ethanediol, Ethanol, Methanol and Propan-1-ol for a temperature range of 10 °C-50 °C and frequency range 

of 0.1 GHz-5 GHz. The identification is done with minimum number of parameters. The input parameters are 

the complex permittivity, frequency and temperature, which are very relevant in a measurement system. The 

accuracy achieved is 100% for the specified temperature and frequency range. The performance of the model 

is validated to confirm that the model is not overfitted. The robustness of the model is tested using an external 

dataset and the performance of the model is found to be good. A GUI is 
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designed for the identification of unknown liquids. Probability of misclassification is also tested by manually 

introducing measurement error in complex permittivity to the standard NPL data. It is observed that the first 

misclassification happens when the measured values of complex permittivity deviates by 6% of standard value 

in the NPL report. All complex permittivity measurement techniques with measurement error less than 

±6% can be incorporated with the proposed model to identify the unknown polar liquid for the temperature 

range of 10 °C-50 °C and frequency range of 0.1 GHz-5 GHz without any misclassification. The response is 

fast and the ambiguity in the identification process is eliminated. The model may be extended to identify polar 

liquid mixtures by suitably extending the dataset. 
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